Радиосвязь


Перейти к содержанию

Главное меню:


Общая схема связи

ЛикБез > О Радиосвязи

Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).
О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Опыт Фарадея.

Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).
О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.


Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.


Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).
О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Выпрямление электрического тока диодом.

Выпрямление электрического тока (шутка).

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

Классическая блок-схема супергетеродинного приемника.

Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).

О РАДИОСВЯЗИ / ОБЩАЯ СХЕМА СВЯЗИ
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
Передатчик
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.



 


Опыт Фарадея.
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
Напряжение батарейки создает поток электронов в первом проводе;
Движущиеся электроны создают магнитное поле вокруг провода;
Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.



Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.



Когерер. Для наглядности металлические пластины показаны раздвинутыми.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
Настройка на волну

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).



Колебательный контур.

Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
Итоги:

Внешнее воздействие
Внешнее напряжение заряжает конденсатор;
После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
Конденсатор разряжается через катушку;
В катушке – электрическое поле;
Электрическое поле создает вокруг катушки магнитное поле;
После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
Магнитное поле начинает «возвращаться» в катушку;
Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
На обкладках конденсатора появляется напряжение;
Напряжение заряжает конденсатор;
Заряд достигает максимума, магнитное поле минимума;
Конденсатор начинает разряжаться через катушку;
Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.

Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
Пора оглянуться

Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К чему все это?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).



Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).

 

 

Схематичное устройство КПЕ (слева) и его внешний вид (справа).

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
 

Забегая назад

Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
 

Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.

Выводы:

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А теперь переходим на прием

В общем случае процесс приема сигнала выглядит следующим образом:
Электромагнитные волны наводят в антенне токи высокой частоты;
Эти токи поступают на входной контур;
Контур выделяет из множества частот только узкую полосу, на которую он настроен;
Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
Детекторный приемник

Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).

 

                             

Выпрямление электрического тока диодом.       Выпрямление электрического тока (шутка).

 

Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.



 

Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
Супергетеродин

Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.



 

Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«Супер» супергетеродин или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 МГц).
Яндекс.Метрика

О сайте | Связные Новости | Страницы истории | ЛикБез | Применение радиосвязи | Антенные устройства | Радиокабель | Радиочастотные разъёмы | Алфавит, 10-код и Q-код | КВ Диапазон | CB Диапазон | CB Радиостанции | УКВ Диапазон | LPD PMR Радиостанции | Сравнение диапазонов CB, LPD и PMR | Радиостанции Vertex и Yaesu | Радиостанции | Схемы радиостанций | Радиостанции KENWOOD | MotoTRBO | Источники Питания | Аккумуляторы радиостанций | Таблица CTCSS кодов | Правила продажи и регистрации радиостанций | Эхолинк | Справочная информация | Справочная информация по СКС | On-Line | Лицензионный софт | Полезные ссылки | Интернет-Магазин | Интернет-Магазин Гаджетов | Добавить статью на сайт | Юмор | Карта сайта


Назад к содержанию | Назад к главному меню